Category Theory and Set Theory as Theories about Complementary Types of Universals
نویسنده
چکیده
Instead of the half-century old foundational feud between set theory and category theory, this paper argues that they are theories about two different complementary types of universals. The set-theoretic antinomies forced naïve set theory to be reformulated using some iterative notion of a set so that a set would always have higher type or rank than its members. Then the universal uF = {x | F (x)} for a property F (.) could never be self-predicative in the sense of uF ∈ uF . But the mathematical theory of categories, dating from the mid-twentieth century, includes a theory of always-self-predicative universals which can be seen as forming the “other bookend” to the never-self-predicative universals of set theory. The self-predicative universals of category theory show that the problem in the antinomies was not self-predication per se, but negated self-predication. They also provide a model (in the Platonic Heaven of mathematics) for the self-predicative strand of Plato’s Theory of Forms as well as for the idea of a “concrete universal” in Hegel and similar ideas of paradigmatic exemplars in ordinary thought.
منابع مشابه
On the Entanglement of Universals-Theory and Christian Faith in the Modern Theological Discourse of Karl Barth
The philosophical investigations into universals was entangled with the combination of a certain Christian faith and Ontology, especially in ancient and medieval times. That is, God’s creative activity provided us with the ontological presumption which enabled universals to be predicated, be perceived and be thought about. Times then have changed, and “the modern turn” in Philosophy tends to re...
متن کاملPOWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES
The paper sets forth in detail categorically-algebraic or catalg foundations for the operations of taking the image and preimage of (fuzzy) sets called forward and backward powerset operators. Motivated by an open question of S. E. Rodabaugh, we construct a monad on the category of sets, the algebras of which generate the fixed-basis forward powerset operator of L. A. Zadeh. On the next step, w...
متن کاملALGEBRAIC GENERATIONS OF SOME FUZZY POWERSET OPERATORS
In this paper, let $L$ be a completeresiduated lattice, and let {bf Set} denote the category of setsand mappings, $LF$-{bf Pos} denote the category of $LF$-posets and$LF$-monotone mappings, and $LF$-{bf CSLat}$(sqcup)$, $LF$-{bfCSLat}$(sqcap)$ denote the category of $LF$-completelattices and $LF$-join-preserving mappings and the category of$LF$-complete lattices and $LF$-meet-preserving mapping...
متن کاملدانش، بینش و مدیریت
Model building is one of the most important characteristics of human beings. According to a classification, there are three kinds of models. The first type are omdels which are unique to every individual person and every body has his own models. Another kind of models are those which are general. Theories arise from this kind of models. The third kind are modols for model building and deals wit...
متن کاملFunctorial semantics of topological theories
Following the categorical approach to universal algebra through algebraic theories, proposed by F.~W.~Lawvere in his PhD thesis, this paper aims at introducing a similar setting for general topology. The cornerstone of the new framework is the notion of emph{categorically-algebraic} (emph{catalg}) emph{topological theory}, whose models induce a category of topological structures. We introduce t...
متن کامل